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Abstract. No-core shell model (NCSM) calculations using ab initio effective
interactions are very successful in reproducing experimental nuclear spectra. The main
theoretical approach is the use of effective operators, which include correlations left
out by the truncation of the model space to a numerically tractable size. We review
recent applications of the effective operator approach, within a NCSM framework, to
the renormalization of the nucleon-nucleon interaction, as well as scalar and tensor
operators.

PACS numbers: 21.60.Cs 23.20.Js

1. Introduction

The theory of effective operators plays an important role in the modern approach to

nuclear structure. Effective interactions are the basic ingredient of the no-core shell

model (NCSM), one of the ab initio methods that provides solution to the nuclear many-

body problem starting from high precision nucleon-nucleon (NN) interactions (i.e., that

describe the two-nucleon data with high accuracy) and theoretical three-nucleon forces.

Numerical solution to the A–body Schrödinger equation can be obtained only if one

truncates the Hilbert space to a finite, yet sufficiently small dimension. Restriction of

the space to a numerically tractable size requires that operators for physical observables

be replaced by effective operators that are designed to account for such effects. Most

applications of the effective operator theory are limited to deriving effective interactions,

but other observables are of great interest as well. In particular, for electromagnetic

operators, a long standing problem in the phenomenological shell model was the use

of effective charges for protons and neutrons. Perturbation theory has been partially

successful in describing empirical effective charges needed to explain experimental
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transition strengths [1]. However, recent investigations using the unitary transformation

approach within the framework of the NCSM to obtain effective operators have reported

some progress in explaining the large values of the empirical effective charges [2]. We

will discuss briefly this result and its consequences later.

In the restricted space, the effective operators are constructed to reproduce the

values of the corresponding physical observables in the full space. However, the

renormalization procedure usually alters properties of bare operators; for example,

the interaction is no longer Hermitian, and general transition operators change their

rotational symmetries properties. While in some cases non-Hermitian Hamiltonians

have advantages [3], in our case this presents a major inconvenience. Moreover,

some approaches introduce energy dependence of the resulting effective operators, an

additional complication for solving the nuclear many-body problem. This drawback is,

however, avoided in the unitary transformation approach to effective operators of Okubo

[4] and others [5, 6, 7, 8]. This method allows us to construct all effective operators

in an energy independent form, and, through an additional similarity transformation,

to restore the Hermiticity of the effective interaction and the roattional properties of

transition operators.

This paper is organized as follows: we review the theoretical approach in Sec. 2,

and then apply the procedure in realistic cases, using realistic two-body interactions,

for the Hamiltonian in Sec. 3, and other general operators in Sec. 4. We draw our

conclusions in Sec. 5.

2. Theoretical Approach

In this section we review the similarity transformation approach to effective operators

and discuss its practical implementation in the case of the nuclear many-body

Hamiltonian.

2.1. Formal theory

It is not our intention to discuss in great detail the method; we will point out the main

features, following the derivation in Refs. [9] and [10].

In our approach, the full Hilbert space is divided into a model space, with associated

projection operator P , and a complementary, excluded space, with the associated

projection operator Q (P + Q = 1). The goal is to perform many-body calculations in

the model space, using a transformed Hamiltonian H,

H = XHX−1, (1)

so that a finite subset of eigenvalues of the initial Hamiltonian H are reproduced. We

need to point out that this is a general approach, which can be applied to non-Hermitian

Hamiltonian operators that can arise, for example, in the context of boson mappings.

To better understand the conditions that we will impose on the transformation

operator X, we start with the results of the Feshbach projection formalism on the
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Schrödinger equation

H|Ψ〉 = EΨ|Ψ〉. (2)

In general for non-Hermitian Hamiltonians, the left and right eigenvectors are not related

simply by a Hermitian conjugation, but we have the freedom to choose a normalization

so that 〈Ψ̃E|ΨE〉 = 1, where 〈Ψ̃E| is the left eigenvector corresponding to the eigenvalue

EΨ. It follows from Eq. (2) that the component of the wave function |Ψ〉 outside the

model space is given by

Q|Ψ〉 =
1

EΨ −QHQ
QHP |Ψ〉, (3)

so that the effective Hamiltonian in the model space can be expressed as

Heff = PHP + PHQ
1

E −QHQ
QHP. (4)

An immediate consequence of Eq. (4) is that in order to obtain an energy independent

Hamiltonian in the model space, it is sufficient to impose one of the following decoupling

conditions

QHP = 0, (5)

or

PHQ = 0 (6)

We note, however, that the former condition also ensures that the Q-space component

of the wave function |Ψ〉 vanishes, although this is not true for its complementary left

eigenstate. Moreover, as it will become clear in the derivation of the effective operators

below, both conditions have to be satisfied so that one obtains energy-independent

effective operators corresponding to other observables besides the Hamiltonian.

In the case of general operators, O, properly transformed by the same

transformation operator X, e.g., the Hamiltonian H in Eq. (1), one has to compute

a matrix element of the form 〈Φ̃|O|Ψ〉, where 〈Φ̃| corresponds possibly to another left

eigenvector of H. Using the fact that the Q-component of the left eigenstate 〈Φ̃| can be

written similarly to Eq. (3)

〈Φ̃|Q = 〈Φ̃|PHQ
1

EΦ −QHQ
, (7)

one can extract the expression for the effective operator in the model space P

Oeff = POP + PHQ
1

EΦ −QHQ
QOP + POQ

1

EΨ −QHQ
QHP

+ PHQ
1

EΦ −QHQ
QOQ

1

EΨ −QHQ
QHP. (8)

As advertised, in order to obtain an energy-independent expression for a general effective

operator one needs to construct the transformation operator X so that both decoupling

conditions (5) and (6) are satisfied. Consequently, both left and right P eigenstates of

the transformed Hamiltonian H have components only in the model space. A number

of other subtleties exist within this effective operator approach [11].
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In order to determine the transformation X, we consider the following ansatz [9, 10]

X = exp(−ω) exp(Ω), (9)

with the new operators fulfilling the additional requrements

ω = QωP,

Ω = PΩQ.

Hence, the decoupling condition (5) transforms into a quadratic equation for ω

QHP = QHP −QωHP + QHωP − ωHω = 0, (10)

which does not depend on Ω, while the decoupling condition (6) becomes a linear

equation for Ω

PHQ = PHQ + PΩHQ−QΩωHQ− PHΩQ− PHωΩQ = 0. (11)

The result of applying such a transformation is the following expressions for the effective

Hamiltonian

Heff = PHP + PHω, (12)

which is manifestly non-Hermitian, even if the original Hamiltonian H is Hermitian,

and for general effective operators:

Oeff = (P + Ω− Ωω)O(P + ω), (13)

which also changes symmetry properties under the Hermitian conjugation operation.

We have made no assumption up to now about the original Hamiltonian, but in

most cases of interest, H is Hermitian. For such applications, one can introduce an

additional transformation [12], so that the effective Hamiltonian in the model space is

also Hermitian [9]

Heff =
P + ω†√
P + ω†ω

H
P + ω√
P + ω†ω

. (14)

Moreover, for Hermitian Hamiltonians one finds Ω = (P + ω†ω)−1ω† [9], so that a

general effective operator can also be written similarly to the effective Hamiltonian, i.e.,

involving only the operator ω

Oeff =
P + ω†√
P + ω†ω

O
P + ω√
P + ω†ω

. (15)

There are two iterative solutions of Eq. (10) that determine the transformation

operator ω: one that converges to the states with the largest P -space components and

is equivalent to the solution of Krenciglowa and Kuo [13], and another which converges

to states lying closest to a chosen parameter appearing in the iteration procedure [6, 7].

However, we present here a more efficient method to find ω. It relies on the fact that

the components of the exact eigenvectors in the complementary space are mapped into
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the model space. Thus, a simple and efficient means to compute the matrix elements of

ω is [14]

〈αQ|ω|αP 〉 =
∑

k∈K
〈αQ|Ψk〉〈Ψk|αP 〉−1, (16)

where |αP 〉 and |αQ〉 are the basis states of the P and Q spaces, respectively, and |Ψk〉
denotes states from a selected set K of exact eigenvectors of the Hamiltonian in the full

space. The dimension of the subspace K is equal with the dimension of the model space

P . In the next subsection, we will present a practical implementation of Eq. (16).

To conclude this brief review of the formal effective operator theory, we would

like to reiterate the main idea: in order to obtain energy-independent operators in a

restricted model space, it is sufficient to design a transformation X so that all the matrix

elements of the transformed Hamiltonian connecting the model and the excluded space

are identically zero, i.e., Eqs. (5) and (6) are simultaneously satisfied. Making the

ansatz in Eq. (9), one can find equations which determine the transformation, so that

the decoupling conditions are satisfied. Finally, in the case of Hermitian Hamiltonians,

such as the many-body nuclear Hamiltonain, we gave the general expressions for the

effective Hamiltonian and effective operators in the model space. Even in this case,

one can, in principle, obtain non-Hermitian effective Hamiltonains, but one can always

make an additional transformation to obtain a Hermitian structure, which is much

more convenient to apply to the description of a system of A nucleons using realistic

interactions.

2.2. Application to the nuclear Hamiltonian

We assume that the system of A nucleons is described by the non-relativistic intrinsic

Hamiltonian

HA =
1

A

A∑

i<j=1

p2
ij

2m
+

A∑

i<j=1

V NN
ij ,

where ~pij = ~pi − ~pj are the relative momenta between two nucleons, and V NN
ij the

NN potential, such as the local Argonne v18 [15, 16] or the non-local charge dependent

Bonn potential [17], which describe with high accuracy the experimental two-nucleon

data. The generalization to include three-body forces is straightforward, but much more

involved (see, e.g., Ref. [18]). Thus, for the purpose of this paper, we neglect three-body

forces.

In the NCSM approach, the single-particle wave functions are described using

harmonic oscillator (HO) states. One then constructs many-body states using a

restricted set of one-body HO states. The model space is determined by the requirement

that the the many-body basis states can have up to Nmaxh̄Ω excitations above the

minimum energy configuration, where h̄Ω is the HO energy parameter and Nmax is an

integer. Including all states up to a given HO energy allows us to separate exactly by

projection containing spurious center-of-mass (CM) motion, even when we work in a

non-translationally invariant basis.
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As seen explicitly in Eq. (16), the solution of the A-body problem is required in

order to solve for the transformation operator ω. However, the eigenvectors |Ψk〉 are,

in principle, the final goal, as they allow computation of any properties of the system.

To practically implement the method to solve many-body problems, we introduce the

cluster approximation. This consists in finding ω for the a-body problem, a < A, and

then using the effective interaction thus obtained for solving the A-body system. There

are two limiting cases of the cluster approximation: first, when a → A, the solution

becomes exact; a higher-order cluster is a better approximation and was shown to

increase the rate of convergence [18, 19]. Second, when P → 1, the effective interaction

approaches the bare interaction; as a result, the cluster approximation effects can be

minimized by increasing as much as possible the size of the model-space size.

We emphasize that in the a-body cluster approximation the explicit decoupling

conditions in Eqs. (5)–(6) are now fulfilled only for the a-body problem:

QaH(a)Pa = QaXaHaX
−1
a Pa = 0,

where Pa, Qa refer to the corresponding projection operators for the a-particle system.

Conditions (5)–(6) are, in general, violated for the A-body problem, but the errors

become smaller with increasing the size of the model space.

The rate of convergence for a fixed cluster approximation can be improved by adding

to HA a CM Hamiltonian, which also provides a single-particle HO basis for performing

numerical calculations. Doing this, we obtain

HΩ
A = HA +

~P 2

2mA
+

1

2
mAΩ2R2

=
A∑

i=1

[
~p2

i

2m
+

1

2
mΩ2~r2

i

]
+

A∑

i>j=1

[
V NN

ij − mΩ2

2A
(~ri − ~rj)

2

]

=
A∑

i=1

hi +
A∑

i>j=1

vij , (17)

In a a-body cluster approximation, this ensures a dependence of the transformation,

and, therefore, of the effective interaction on A. The CM term does not introduce any

net influence on the converged intrinsic properties of the many-body calculation, as

we subtract it in the final many-body calculation. Moreover, although this addition

and subtraction does not affect our exact treatment of the CM motion, this procedure

introduces a pseudo-dependence upon the HO energy h̄Ω, and the two-body cluster

approximation described above will exhibit this dependence. In the largest model spaces,

however, important observables manifest a considerable independence of the energy h̄Ω

and the model space size, i.e., the value of Nmax.

Finally, note that even if the original Hamiltonian contained just one- and two-

body terms, the operator X, the transformed Hamiltonian Heff [by means of Eq. (14)]

and transformed operators [by means of Eq. (15)] all contain up to irreducible a-body

terms. (The exact effective operators contain up to irreducible A-body terms.)
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Figure 1. 4He: dependence of the ground- and excited-state energies on Nmax in
the three-body cluster approximation (left panel), and comparison of the convergence
rates of the ground-state energy for the two- and three-body cluster approximations
(right panel). Two different HO energies (19 and 28 MeV) have been used in each
case. The dashed line is the exact ground-state energy [20] for the CD Bonn potential
used in this investigation, while the dotted lines represent the experimental ground-
and first excited-state energies.

3. Application to effective interactions

The first application of the effective operator theory in the context of the NCSM is

to compute an effective interaction in a restricted model space. While the cluster

approximation described in Sec. 2 is general for a nucleons, we are currently limited by

the complexity of the calculations to a ≤ 3.

In Figure 1 we present the results for 4He, using both the two- and three-body

cluster approximations. In the left panel, we show both the ground- and excited-state

energies using HO energies of 19 and 28 MeV and a three-body cluster in order to

compute the effective interaction for 4He, starting from the CD Bonn interaction [17].

The convergence pattern shows a dependence upon the HO energy. Thus, the ground-

state energy converges faster when h̄Ω = 28 MeV, but both HO energies eventually

converge to the exact result obtained by solving, e.g., the Fadeev-Yakubovski equations

[20]. The complete convergence of the ground-state energy can be obtained within the

NCSM, as demonstrated, e.g., in Fig. 1 of Ref. [21]. Because we neglect three-body

interactions, the converged result misses by a few MeV the experimental value. Unlike

for the ground state, the first 0+ excited-state energy has a faster convergence rate for

h̄Ω = 19 MeV. However, this state converges much more slowly than the ground state,

and even in the largest model spaces the results are quite sensitive to the choice of the

HO energy parameter.

As expected, a higher-body cluster approximation includes more correlations in the

interactions, and the convergence is faster. This is illustrated in the right panel of Fig.

1, where we plot the ground-state energy dependence on Nmax obtained by computing

the effective interaction using both the two- and three-body cluster approximations.
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The rate of convergence is faster in the three-body cluster approximation for both HO

energies chosen for this example.

We have used 4He in this section to illustrate the convergence properties of effective

interactions, but the method has been applied successfully to the description of the

spectra of p shell nuclei [14, 18, 22, 23, 24] and beyond.

4. Application to general operators

So far, most applications of the NCSM approach have been to calculating the effective

interaction, and only a few of publications [2, 25, 26, 27] have investigated the

renormalization of general operators in realistic calculations of nuclear properties. In

Ref. [2] Navrátil et al. performed large-basis NCSM calculations, which were later

explicitly truncated into a 0h̄Ω space and fitted to one-body quadrupole operators.

By construction these calculations contained all correlations up to six-body due to the

truncation and, hence, yielded the large effective charge renormalizations of 1.5 e for

protons and 0.5 e for neutrons found empirically. However, the full space renormalization

of selected electromagnetic operators has been reported only relatively recently [26, 27].

We review below the results for one- and two-body operators.

4.1. One-body operators

In the a-body cluster approximation, the effective operators corresponding to an

one-body operator will have, in general, irreducible a-body terms. The simplest

approximation is the two-body cluster. In order to apply it, one has to rewrite the

original one-body contributions as a sum of two-body terms. For details on this

procedure, we refer the reader to, e.g., Refs. [25, 26].

In the case of the quadrupole operator, we follow the procedure described in

Ref. [26]. Selected B(E2) results, obtained using the two-body cluster approximation

for 6Li and 12,14C are presented in Table 1. We have performed calculations with

effective operators only in small model spaces for several reasons. First, as expected

from the convergence properties of effective operators mentioned in Sec. 2, larger

renormalization effects are expected in smaller model spaces. Second, the application of

the procedure for tensor operators is much more involved, since they can connect states

with different angular momentum or/and isospin. Hence, in Eq. (15) one can have

different transformation operators ω to the left and to the right of the bare operator.

Moreover, the number of two-body matrix elements for non-scalar operators can be

orders of magnitude larger than the number of one-body matrix elements. Finally, the

main purpose of these investigations was a qualitative understanding of the influence of

effective operators and not a highly accurate description of the experimental data.

As illustrated in Table 1, the effective operators have very little effect on the results

for the qudrupole transitions. For 6Li, we also present the B(E2) values obtained in

10h̄Ω model space [23]. If the effect of the renormalization of the quadrupole operator
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Table 1. B(E2), in e2fm4, for selected nuclei and model spaces, using the bare
operator and the effective operator, computed in the two-body cluster approximation.

Nucleus Observable Model Space Bare operator Effective operator

6Li B(E2, 1+0 → 3+0) 2h̄Ω 2.647 2.784
6Li B(E2, 1+0 → 3+0) 10h̄Ω 10.221 –
6Li B(E2, 2+0 → 1+0) 2h̄Ω 2.183 2.269
6Li B(E2, 2+0 → 1+0) 10h̄Ω 4.502 –
10C B(E2, 2+

1 0 → 0+0) 4h̄Ω 3.05 3.08
12C B(E2, 2+

1 0 → 0+0) 4h̄Ω 4.03 4.05

had been significant, then the B(E2) values in the small model spaces would be closer

to the results in the 10h̄Ω model space, which is obviously not the case. The same

weak renormalization can be observed for the carbon isotopes, listed in Table 1. This is

contrary to the previous investigation in the framework of the NCSM [2], which reported

obtaining the correct effective proton and neutron phenomenological charges. However,

the main difference is that the 6Li calculation in Ref. [2] included up to six-body

correlations. Comparison of the two results suggests that higher-order clusters can play

an important role in the renormalization of the quadrupole operator.

4.2. Two-body operators

In a previous publication [26], we used a two-body Gaussian operator to demonstrate the

dependence of the renormalization upon the range of the operator. In a recent paper [27],

we computed the longitudinal-longitudinal distribution function, part of the inclusive

(e, e′) response. In this paper we present similar results, obtained in smaller model

spaces but converged nevertheless at high momentum transfer (=short range), because

we use the appropriate effective operators. Moreover, the effect of the renormalization

is larger in smaller model spaces, as noted before.

To define the longitudinal-longitudinal distribution function, one starts with the

Coulomb sum rule

SL(q) =
1

Z

∫ ∞

ωel

dωSL(q, ω), (18)

which is the total integrated strength measured in electron scattering. In Eq. (18),

SL(q, ω) = R(q, ω)/|GE,p(q, ω)|2, with R(q, ω) the longitudinal response function and

GE,p(q, ω) the proton electric form factor, while ωel is the energy of the recoiling A-

nucleon system with Z protons. SL(q), which is related to the Fourier transform of the

proton-proton distribution function [28, 29], can be expressed in terms of the longitudinal

form factor FL(q) and the longitudinal-longitudinal distribution function ρLL as [30]

SL(q) =
1

Z
〈g.s.|ρ†L(q)ρL(q)|g.s.〉 − 1

Z
|〈g.s.|ρL(q)|g.s.〉|2

≡ 1 + ρLL(q)− ZFL(q)/GE,p(q, ωel).
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Figure 2. The longitudinal-longitudinal distribution function in 4He, obtained using
bare operators (left panel) and effective operators (right panel). The HO energy used
in this calculation was h̄Ω = 28 MeV, while the NN interaction was CD Bonn.

If one neglects relativistic corrections and two-body currents, then ρL(q) is the charge

operator,

ρL(q) =
1

2

A∑

i=1

exp(iq · ri)(1 + τz,i),

so that the longitudinal-longitudinal distribution function becomes [30]

ρLL(q) =
1

4Z

∑

i6=j

〈g.s.|j0(q|ri − rj|)(1 + τz,i)(1 + τz,j)|g.s.〉.

In Figure 2 we present the results for the longitudinal-longitudinal distribution

function for 4He. At high momentum transfer, the results obtained using bare operators

depend strongly upon the model space. On the other hand, the results obtained with

effective operators are model space invariant at high q, although Figure 1 shows that

the wave function is not fully converged, since the energy is not converged in these

very small model spaces. They agree with the values computed in larger model spaces

and different HO energies given in Ref. [27]. At intermediate momentum transfer, i.e.,

q ≈ 2.5 fm−1, even the effective operator results vary. This effect is due to the fact that

the long range part of the operator has not yet converged in these small model spaces.

Similar results for the longitudinal-longitudinal distribution function have been

obtained for 12C, where calculations in very large model spaces are not possible.

However, even in the smallest model space, 0h̄Ω, we were able to obtain good results

for high momentum transfer, which reproduce the values in larger model spaces [27].

As demonstrated in Ref. [26] with a two-body Gaussian operator and illustrated

here for the longitudinal-longitudinal distribution function, in the two-body cluster

approximation the renormalization depends strongly of the range of the operator. Short

range operators (high momentum transfer) are very well renormalized and the results

become model-space independent even in the two-body cluster approximation, while
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long-range operators, such as the quadrupole transition operator, or the longitudinal-

longitudinal distribution function for small and intermediate momentum transfer, are

only weakly renormalized.

5. Conclusions

In this paper, we have reviewed the application of the effective operator theory in

the framework of the NCSM. While in the derivation one can obtain non-Hermitian

operators that are more suitable for some applications [3], we construct, by means of

additional transformations, Hermitian operators, which are easier to utilize in large scale

calculations.

The ab initio NCSM has been applied successfully to the description of the nuclear

spectra for light nuclei [14, 18, 22, 23, 24], i.e., A ≤ 16, and beyond [31, 32]. The

wave functions obtained can be used to calculate and predict nuclear properties, such

as the proton radii of halo nuclei [33], or the astrophysical S-factor [34], to cite just a

couple of the most recent results. Moreover, for light nuclei, the precision of the NCSM

method makes it possible to investigate the reliability of the chiral nuclear interaction.

This follows from the fact that the properties, e.g., energy spectra, of p-shell nuclei

are sensitive to the subleading parts of the chiral interactions, including three-nucleon

forces [35]. For heavier nuclei, another approach, designed to improve the convergence

of the results, has been recently proposed, combining the inverse J-matrix scattering

technique and the NCSM [36].

In the two-body cluster approximation, one has now the ability to compute not

only the effective interaction, but also the consistent effective operators corresponding

to scalar and tensor observables. We have shown a strong dependence on the

renormalization of the range of the bare operator. Thus, if the operator is of short range,

then one obtains a good renormalization in the two-body cluster approximation, as

the unitary transformation used to obtain the effective interaction renormalizes mostly

the short-range repulsion of the potential. Consequently, one obtains model-space

independence results for such observables. Long-range operators, on the other hand,

are only weakly renormalized at the two-body cluster level. In order to accomodate the

long-range correlations one has to increase the model space and/or use a higher-order

cluster approximation. The success of latter was demonstrated by the good results for

the 0h̄Ω effective charges obtained in a restricted NCSM calculation [2].
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[14] Navrátil P, Vary J P and Barrett B R 2000 Phys. Rev. C 62 054311
[15] Wiringa R B, Stocks V G J and R. Schiavilla 1995 Phys. Rev. C 51 38
[16] Pieper S and Wiringa R B 2001 Annu. Rev. Nucl. Part. Sci. 51 53
[17] Machleidt R, Sammarruca F and Song Y 1996 Phys. Rev. C 53 1483
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